Inference on dynamic models for non-Gaussian random fields using INLA
نویسندگان
چکیده
منابع مشابه
Approximate Bayesian Inference for Hierarchical Gaussian Markov Random Fields Models
Many commonly used models in statistics can be formulated as (Bayesian) hierarchical Gaussian Markov random field models. These are characterised by assuming a (often large) Gaussian Markov random field (GMRF) as the second stage in the hierarchical structure and a few hyperparameters at the third stage. Markov chain Monte Carlo is the common approach for Bayesian inference in such models. The ...
متن کاملNumerical Simulation of Non-Gaussian Random Fields
The non-Gaussian random fields are used to modelling some dynamic loads generated by wind turbulence, ocean waves, earthquake ground motion etc. These fields also represent the uncertain properties of different materials (reinforced concrete, composite, soils etc.). This paper presents some methods and the corresponding algorithms to the numerical simulation of stationary non-Gaussian random fi...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Inference for Hierarchical Gaussian Markov Random Fields Models
Many commonly used models in statistics can be formulated as Hierarchical Gaussian Markov random field (GMRF) models. These are characterised by assuming a (often large) GMRF as the second stage in the hierarchical model and a few hyperparameters at the third stage. Markov chain Monte Carlo is the common approach to do inference from such models. The variance of the Monte Carlo estimates is Op(...
متن کاملPoisson Random Fields for Dynamic Feature Models
We present the Wright-Fisher Indian buffet process (WF-IBP), a probabilistic model for time-dependent data assumed to have been generated by an unknown number of latent features. This model is suitable as a prior in Bayesian nonparametric feature allocation models in which the features underlying the observed data exhibit a dependency structure over time. More specifically, we establish a new f...
متن کاملFitting dynamic models using integrated nested Laplace approximations - INLA
In this paper we propose a computational framework to perform approximate Bayesian inference in linear and generalized linear dynamic models based on the Integrated Nested Laplace Approximation (INLA) approach, which overcomes some limitations of computational tools presently available in the dynamic modeling literature. We show how to formulate specific latent models in a state-space form, eve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brazilian Journal of Probability and Statistics
سال: 2017
ISSN: 0103-0752
DOI: 10.1214/15-bjps300